精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex-ax-1(a>0,e为自然数的底数).
(1)求函数f(x)的最小值;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(3)在(2)的条件下,证明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*).

分析 (1)通过对函数f(x)求导,讨论f(x)的单调性可得函数f(x)的最小值;
(2)根据条件可得g(a)=a-alna-1≥0,讨论g(a)的单调性即得结论;
(3)由(2)得ex≥x+1,即ln(x+1)≤x,通过令x=$\frac{1}{k}$ (k∈N*),即$\frac{1}{k}$>ln$\frac{1+k}{k}$=ln(1+k)-lnk,(k=1,2,…,n),然后累加即可得证.

解答 解:(1)函数f(x)的导数为f′(x)=ex-a,
令f′(x)=0,解得x=lna,
当x>lna时,f′(x)>0;当x<lna时,f′(x)<0,
因此当x=lna时,f(x)min=f(lna)=elna-alna-1=a-alna-1.
(2)因为f(x)≥0对任意的x∈R恒成立,所以f(x)min≥0,
由(1)得f(x)min=a-alna-1,
所以a-alna-1≥0,
令g(a)=a-alna-1,
函数g(a)的导数为g′(a)=-lna,
令g′(a)=0,解得a=1.
当a>1时,g′(a)<0;当0<a<1时,g′(a)>0,
所以当a=1时,g(a)取得最大值,为0.
所以g(a)=a-alna-1≤0.
又a-alna-1≥0,因此a-alna-1=0,
解得a=1;
(3)由(2)得ex≥x+1,即ln(x+1)≤x,
当且仅当x=0时,等号成立,
令x=$\frac{1}{k}$ (k∈N*),则$\frac{1}{k}$>ln(1+$\frac{1}{k}$),
即$\frac{1}{k}$>ln$\frac{1+k}{k}$=ln(1+k)-lnk,(k=1,2,…,n),
累加,得1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)-lnn+lnn-ln(n-1)+…+ln2-ln1,
则有1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*).

点评 本题考查函数的最值,单调性,通过对表达式的灵活变形是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三个内角A、B、C所对的边分别为a,b,c,若2cosBsinAsinC=sin2B,求证:a2,b2,c2成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知圆柱的高为4,AA1,BB1,CC1是圆柱的三条母线,AB是底面圆O的直径,AC=3,AB=5.
(1)求证:AC1∥平面COB1
(2)求二面角A-BC1-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,点M在边BC上,且2$\overrightarrow{BM}$=3$\overrightarrow{MC}$,E在边AC上,且$\overrightarrow{EC}$=3$\overrightarrow{AE}$,则向量$\overrightarrow{EM}$-$\overrightarrow{AB}$=(  )
A.$\frac{7}{20}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$B.$\frac{7}{20}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$C.$\frac{2}{5}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$D.$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{1}{5}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知0<θ≤$\frac{π}{2}$,则方程x2+y2•sinθ=1表示的平面图形是(  )
A.焦点在x轴的椭圆B.焦点在y轴的椭圆
C.圆或焦点在x轴的椭圆D.圆或焦点在y轴的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(重点中学做)已知直线x-my-2=0与抛物线y2=8x相交于A,B两点,线段AB的中点为M(6,4m),则|AB|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等腰三角形顶角的余弦值为$\frac{3}{4}$,则底角的正弦值是$\frac{\sqrt{14}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦点为顶点,顶点为焦点的双曲线渐近线方程是(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知m,n∈N*且n>m,在公比为q的等比数列{an}中,有an=am•qn-m成立,类似地,在公差为d的等差数列{bn}中,有bn=bm+(n-m)d成立.

查看答案和解析>>

同步练习册答案