精英家教网 > 高中数学 > 题目详情
若正数数列{an}满足,其中Sn是数列{an}的前n项和.
(1)求Sn
(2)若,是否存在bk=bm(k≠m)?若存在,求出所有相等的两项;若不存在,说明理由.
【答案】分析:(1)令n=1,及an>0,可求a1,由可得,即Sn2-Sn-12=1,则可得{Sn2}是以1首项,以1为公差的等差数列,由等差数列的通项可求Sn2,进而可求Sn
(2)由(1)可得,要判断k≠m是否存在bk=bm,考虑函数(x≥1)的单调性,结合导数的知识可求
解答:解:(1)令n=1,又an>0,得a1=1.
,即
∴Sn2-Sn-12=1,S12=a12=1
∴{Sn2}是以1为首项,以1为公差的等差数列
∴Sn2=S12+(n-1)•1=1+n-1=n

(2),则考虑函数(x≥1),则
令h(x)=x+1+xlnx(x≥1),则h'(x)=-lnx≤0,∴h(x)在[1,+∞)递减
∵h(1)=2>0,h(2)=3-2ln2>0,h(3)=4-3ln3>0,h(4)=5-4ln4<0
∴x≥4时,h(x)≤h(4)<0,则g'(x)<0,g(x)在[4,+∞)递减;
1≤x≤3时,h(x)≥h(3)>0,则g'(x)>0,g(x)在[1,3]递增.
∴g(1)<g(2)<g(3),g(4)>g(5)>g(6)>…
即lnb1<lnb2<lnb3,lnb4>lnb5>lnb6>…
∴b1<b2<b3,b4>b5>b6>…

∴b1<b2<b3<b4>b5>b6>…
又b1=1,当n≠1时,bn>1.
∴若存在两项相等,只可能是b2、b3与后面的项相等
,∴b2=b8
,∴数列bn中存在唯一相等的两项b2=b8
点评:本题主要考查了利用数列的递推公式求解数列的通项公式,等差数列的通项公式的应用及利用函数的导数判断函数的单调性及数列单调性的应用,属于函数与数列的综合应用的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+m,其中m∈R,定义数列{an}如下:a1=0,an+1=f(an),n∈N*.
(1)当m=1时,求a2,a3,a4的值;
(2)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列?若存在,求出实数m的值,并求出等差数列的公差;若不存在,请说明理由.
(3)若正数数列{bn}满足:b1=1,bn+1=2f(
bn
)-2m
(n∈N*),Sn为数列{bn}的前n项和,求使Sn>2010成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果正数数列{an}满足:对任意的正数M,都存在正整数n0,使得an0>M,则称数列{an}是一个无界正数列.
(Ⅰ)若an=3+2sin(n)(n=1,2,3,…),bn=
1
n
n=1,3,5,…
n+1
2
n=2,4,6,…
分别判断数列{an}、{bn}是否为无界正数列,并说明理由;
(Ⅱ)若an=n+2,是否存在正整数k,使得对于一切n≥k,有
a1
a2
+
a2
a3
+…+
an
an+1
<n-
1
2
成立;
(Ⅲ)若数列{an}是单调递增的无界正数列,求证:存在正整数m,使得
a1
a2
+
a2
a3
+…+
am
am+1
<m-2009

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数数列{an}满足Sn=
1
2
(an+
1
an
)
,其中Sn是数列{an}的前n项和.
(1)求Sn
(2)若bn=(
S
2
n
)
1
S
2
n+1
,是否存在bk=bm(k≠m)?若存在,求出所有相等的两项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=(k-4)x2+kx
 &(k∈R)
,对任意实数x,f(x)≤6x+2恒成立;正数数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)试写出一个区间(a,b),使得当an∈(a,b)时,数列{an}在这个区间上是递增数列,并说明理由;
(3)若已知,求证:数列{lg(
1
2
-an)+lg2}
是等比数列.

查看答案和解析>>

同步练习册答案