精英家教网 > 高中数学 > 题目详情
在△ÀBC中,求证:c(acosB-bcosA)═a2-b2
【答案】分析:利用余弦定理表示出cosB及cosA,代入所证等式的左边,去括号约分化简后,得到结果与等式右边相等,得证.
解答:解:∵cosB=,cosA=
∴等式左边=c(acosB-bcosA)=ac•-bc•=(a2+c2-b2-b2-c2+a2)=a2-b2=等式右边,得证.
点评:此题考查了余弦定理的应用,余弦定理很好的建立了三角形的边角关系,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

同步练习册答案