精英家教网 > 高中数学 > 题目详情
函数y=ex(e为自然对数的底数)的图象向下平移b(0<b,b≠1)个单位后得到的图象记为Cb,Cb与x轴交于Ab点,与y轴交于Bb点,O为坐标原点
(1)写出Cb的解析式和Ab,Bb两点的坐标
(2)判断线段OAb,OBb长度大小,并证明你的结论
(3)是否存在两个互不相等且都不等于1的正实数m,n,使得Rt△OAmBm与Rt△OAnBn相似,如果相似,能否全等?证明你的结论.
(1)由题得y=ex-b,
令y=0,Ab(lnb,0);
令x=0,Bb(0,1-b).
(2)OAb=|lnb|,OBb=|1-b|.
①当0<b<1时,OAb=-lnb,OBb=1-b.
设函数f(x)-lnx-x-1 (0<x<1),
f'(x)=
1
x
-1>0,
∴f(x)在(0,1)上单调递增,
∴f(x)<f(1)=0,
∴-lnx>-x+1
∴OAb>OBb
②当b>1时,同理可得OAb>OBb
(3)①当三角形同在第二象限时,0<m<1,0<n<1时,OAb>OBb
若Rt△OAmBm与Rt△OAnBn相似,只有
1-m
-lnm
=
1-n
-lnn
?
1-m
lnm
=
1-n
lnn

设函数g(x)=
1-x
lnx
(0<x<1),
g'(x)=
-lnx-
1
x
+1
ln 2x
=
x-xlnx-1
xln 2x
(0<x<1),
设函数h(x)=x-lnx-1,h'(x)=-lnx>0在(0,1)上恒成立,
∴h(x)在(0,1)上单调递增,∴h(x)<h(1)=0在(0,1)上恒成立,
∴g'(x)<0在(0,1)上恒成立,g(x)在(0,1)上单调递减,
所以当0<m<1,0<n<1时,不存在.当三角形同在第四象限时,m>1,n>1,同理可得m,n不存在.
③当三角形在不同象限时,不妨设0<m<1,n>1时,若Rt△OAmBm与Rt△OAnBn相似,
则OAm>OBm,OAn<OBn,则有
lnm
m-1
=
n-1
lnn

设M={f1m|f1m=
lnm
m-1
(0<m<1)},N={f2(n)|f2(n)=
n-1
lnn
(n>1)},
有g(x)性质可得:取m∈(
1
e3
1
e
),f1(m)=
lnm
m-1
在(
1
e3
1
e
)上单调递增,
∴f1(m)∈[
e
e-1
3e3
e3-1
],2∈[
e
e-1
3e3
e3-1
]
取n∈[e,e2],f2(n)=
n-1
lnn
在[e,e2]递增,
f2(n)∈[e-1,
e2-1
2
],2∈[e-1,
e2-1
2
].
可得M∩N≠φ,因此存在0<m<1,n>1,使得Rt△OAmBm与Rt△OAnBn相似.
如果全等,则有.
OA m=OB n
OB m=OA n
?
-lnm=n-1
1-m=lnn
?
lnm=1-n
lnn=1-m

由lnm=1-n?m=e1-n,代入lnn=1-m,
lnn=1-e1-n?enlnn=en-e.
设函数F(x)=exlnx-ex+e (x>1),
F'(x)=exlnx+
ex
x
-ex
=
ex
x
(xlnx-x+1).
设函数H(x)=xlnx-x+1   ( x>1),
H'(x)=lnx+1-1=lnx>0,
所以H(x)在(1,+∞)上单调递增,∴H(x)>H(1)=0.
所以F'(x)>0在(1,+∞)上恒成立,F(x)在(1,+∞)上单调递增
∴F(x)>F(1)=0.
因此不存在n>1,使得enlnn=en-e.
所以不存在两个互不相等且都不等于1的正实数m,n,使得Rt△OAmBm与Rt△OAnBn全等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳一中南区学校高一(上)期中数学试卷(解析版) 题型:选择题

函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有( )
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳一中南区学校高一(上)期中数学试卷(解析版) 题型:选择题

函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有( )
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳市高一(上)期中数学模拟试卷(解析版) 题型:选择题

函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有( )
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有(  )
A.f(x+y)=f(x)f(y)B.f(x+y)=f(x)+f(y)C.f(xy)=f(x)f(y)D.f(xy)=f(x)+f(y)

查看答案和解析>>

同步练习册答案