【题目】在平面直角坐标系中,倾斜角为
的直线l与曲线C:
,(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是 .
科目:高中数学 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足
且
,则称函数
为“
函数”.
试判断
是否为“
函数”,并说明理由;
函数
为“
函数”,且当
时,
,求
的解析式,并写出在
上的单调递增区间;
在
条件下,当
时,关于
的方程
为常数
有解,记该方程所有解的和为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某礼品店要制作一批长方体包装盒,材料是边长为
的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是
的正方形,然后在余下两个角处各切去一个长、宽分别为
、
的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.
![]()
(1)求包装盒的容积
关于
的函数表达式,并求函数的定义域;
(2)当
为多少时,包装盒的容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ex,g(x)=x-b,b∈R.
(1)若函数f (x)的图象与函数g(x)的图象相切,求b的值;
(2)设T(x)=f (x)+ag(x),a∈R,求函数T(x)的单调增区间;
(3)设h(x)=|g(x)|·f (x),b<1.若存在x1,x2
[0,1],使|h(x1)-h(x2)|>1成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.
(1)求
的值;
(2)若sin A=
,求sin(C-
) 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙3人投篮,投进的概率分别是
.
(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用
表示乙投篮3次的进球数,求随机变量
的概率分布及数学期望
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,则下列命题中正确的个数是( )
①当
时,函数
在
上是单调增函数;
②当
时,函数
在
上有最小值;
③函数
的图象关于点
对称;
④方程
可能有三个实数根.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.
(1)证明:an+2﹣an=λ
(2)是否存在λ,使得{an}为等差数列?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com