精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.
(1)求M;
(2)当a,b∈M时,证明:3|a+b|≤|ab+9|.

分析 (1)由条件利用绝对值的意义求出不等式f(x)≤6的解集M.
(2)用分析法证明此不等式,分析使此不等式成立的充分条件为(a2-9)(9-b2)≤0,而由条件a,b∈M可得(a2-9)(9-b2)≤0成立,从而证得要证的不等式.

解答 解:(1)不等式即|x+2|+|x-2|≤6,
而|x+2|+|x-2|表示数轴上的x对应点到-2、2对应点的距离之和,
-3和3对应点到-2、2对应点的距离之和正好等于6,
故不等式的解集为M=[-3,3].
(2)要证3|a+b|≤|ab+9|,只要证9(a+b)2≤(ab+9)2
即证:9(a+b)2-(ab+9)2=9(a2+b2+2ab)-(a2•b2+18ab+81)=9a2+9b2-a2•b2-81=(a2-9)(9-b2)≤0,
而由a,b∈M,可得-3≤a≤3,-3≤b≤3,
∴(a2-9)≤0,(9-b2)≥0,∴(a2-9)(9-b2)≤0成立,
故要证的不等式3|a+b|≤|ab+9|成立.

点评 本题主要考查绝对值的意义、绝对值不等式的解法,用分析法证明不等式,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图:在三棱柱ABC-A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,且C1B1⊥AB.
(1)求证:CB⊥平面A1ABB1    
(2)若C1B1=3,AB=4,∠ABB1=60°,求AC1与平面BCC1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f($\frac{x}{y}$)=f(x)-f(y),
(1)求f(1)的值;
(2)证明f(x2)=2f(x)(x>0);
(3)若f(4)=1,解关于x不等式f(x2+$\frac{8}{3}$x)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.下列命题中,判断条件p是条件q的什么条件:
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:p且q是真命题,q:非p为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P,Q关于直线x+my+4=0对称.
(1)求实数m的值;
(2)是否存在直线PQ,满足$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)求证:B1C1⊥CE
(2)求点C到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知矩形ABCD所在平面与等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M为线段AE的中点.
(Ⅰ) 证明:BM⊥平面AEC;
(Ⅱ) 求MC与平面DEC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在(-1,1)内有零点且单调递增的是(  )
A.y=log2(x+2)B.y=2x-1C.y=x2-$\frac{1}{2}$D.y=-x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.sin20°cos10°+cos20°sin10°=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案