精英家教网 > 高中数学 > 题目详情
圆x2+y2=1内接等腰梯形A,B,C,D,其中AB为圆的直径(如图). 
(1)设C(x,y)(x>0),记梯形ABCD的周长为f(x),求f(x)的解析式及最大值;
(2)求梯形ABCD面积的最大值.
分析:(1)根据圆心为O,则OA=OB=OC=OD=1,设腰长为b,上底长是2x,利用勾股定理得出,则y=2+2x+2
2-2x
,再利用二次函数最值求出即可.
(2)由(1)知,梯形面积为S(x)=(x+1)
1-x2
(0<x<1)
,利用导数求最值的方法可知,函数函数在(0,
1
2
)上单调递增,在(
1
2
,1)
单调递减,由此可求面积的最大值.
解答:解:(1)圆心为O,连接OD,OC,过O作OE⊥CD,过C作CP⊥OB,
∴E为DC的中点,DE=CE=
1
2
CD=x,
∵等腰梯形ABCD,
∴DC∥AB,OE⊥CD,
∴OE⊥AB,
∴∠CEO=∠EOP=∠OPC=90°,
∴四边形EOPC为矩形,
∴EC=OP,则OA=OB=OC=OD=1,
设腰长为b,由于上底长是2x,过C作直径的垂线,垂足是P,
则b2=CP2+PB2=OC2-OP2+PB2=1-x2+(1-x)2=2-2x
所以y=2+2x+2b=2+2x+2
2-2x

t=
2-2x
0<t<
2
),则x=1-
1
2
t2

y=2+2(1-
1
2
t2)+2t=-t2+2t+4=-(t-1)2+5

∴该梯形周长的最大值是5;
(2)由(1)知,CP2=1-x2
S(x)=
1
2
×(2+2x)×
1-x2
=(x+1)
1-x2
(0<x<1)

所以若令S′(x)=
1-x2
+(x+1)×
1
2
×
-2x
2-2x
=
-2x2-x+1
1-x2
=0
  
则2x2+x-1=0(0<x<1),解得 x=
1
2
 
0<x<
1
2
时,S′(x)>0,当
1
2
<x<1
时,S′(x)<0,
所以当x=
1
2
时,S(x)有最大值
3
3
4

即梯形ABCD面积的最大值为
3
3
4
点评:此题主要考查了二次函数的最值以及等腰梯形的性质和解直角三角形以及利用导数求函数的最值问题,根据题意得出y=2+2x+2
2-2x
从而利用二次函数最值求法求出是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2=1,点A(1,0),△ABC内接于圆,且∠BAC=60°,当B、C在圆上运动时,BC中点的轨迹方程是(  )
A、x2+y2=
1
2
B、x2+y2=
1
4
C、x2+y2=
1
2
(x<
1
2
D、x2+y2=
1
4
(x<
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杭州二模)如图,在直角坐标系xOy中,锐角△ABC内接于圆x2+y2=1.已知BC平行于x轴,AB所在直线方程为y=kx+m(k>0),记角A,B,C所对的边分别是a,b,c.
(1)若3k=
2ac
a2+c2-b2
,求cos2
A+C
2
+sin2B
的值;
(2)若k=2,记∠xOA=α(0<α<
π
2
),∠xOB=β(π<β<
2
),求sin(α+β)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=1,点A(1,0),△ABC内接于该圆,且∠BAC=60°,当BC在圆上运动时,求BC的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=1,点A(1,0),△ABC内接于该圆,且∠BAC=60°,当BC在圆上运动时,求BC的中点的轨迹方程.

查看答案和解析>>

同步练习册答案