精英家教网 > 高中数学 > 题目详情
若△ABC的三个内角A,B,C成等差数列,且最大边为最小边的2倍,求三内角之比.
分析:先由三个内角A,B,C成等差数列知B=60°,即角B不是最大和最小边,则最大边不妨设为a,最小边为c,即a=2c,利用正弦定理,得角A和C的大小,从而得到三内角之比.
解答:解:∵△ABC的三个内角A,B,C成等差数列,∴2B=A+C,又A+B+C=180°,∴B=60°,A+C=120°,
不妨设a为最大边,则c为最小边,即a=2c,由正弦定理有:
a
sinA
=
c
sinC
,即
2c
sin(120°-C)
=
c
sinC

tanC=
3
3
,即C=30°,A=90°,故A:B:C=90°:60°:30°=3:2:1
所以三内角之比为3:2:1
点评:此题拷查了等差数列性质和解三角形中正弦定理的运用,其中解此题关键在于找出三角形的最大边和最小边,若突破这一难点,此题就迎刃而解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△AB形状一定是
直角
角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=2:3:4,则△ABC(  )
A、一定是直角三角形B、一定是钝角三角形C、一定是锐角三角形D、可能是锐角三角形,也可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角成等差数列,三边成等比数列,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)若△ABC的三个内角的正弦值分别等于△A'B'C'的三个内角的余弦值,则△ABC的三个内角从大到小依次可以为
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
(写出满足题设的一组解).

查看答案和解析>>

同步练习册答案