精英家教网 > 高中数学 > 题目详情
已知0<x<1,则函数y=
4
x
+
1
1-x
的最小值为
 
考点:利用导数求闭区间上函数的最值,基本不等式
专题:导数的综合应用
分析:利用导数研究函数的单调性极值与最值即可得出.
解答: 解:∵0<x<1,
则函数f′(x)=-
4
x2
+
1
(1-x)2
=
(2-x)(3x-2)
x2(1-x)2

当f′(x)>0时,解得
2
3
<x<1
;当f′(x)<0时,解得0<x<
2
3

f(
2
3
)
=0.
∴当且仅当x=
2
3
时取得极小值即最小值.
f(
2
3
)
=
4
2
3
+
1
1-
2
3
=6+3=9.
故答案为:9.
点评:本题考查了利用导数研究函数的单调性极值与最值,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)满足f(0)=1且有f(x+1)=f(x)+2x.
(1)求f(x);
(2)设g(x)=f(x)+mx在[-1,2]上是单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

27
8
 -
2
3
-(
49
9
0.5+(0.2)-2×
2
25
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos4α-sin4α=
2
3
,α∈(0,
π
2
),则cos(2α+
π
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|(x+1)(-x+2)≥0},集合B为整数集,则A∩B=(  )
A、{-1,0}
B、{0,1}
C、{-2,-1,0,1}
D、{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N=M,则k的取值范围(  )
A、(-1,2)
B、[2,+∞)
C、(2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M是双曲线
x2
40
-
y2
9
=1上的一点,F1、F2是双曲线的两个焦点,∠F1MF2=90°,求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)+
3
2
(x∈R).
(1)求f(x)的最小正周期及区间[0,π]上的单调递减区间;
(2)若函数y=f(x)的图象向右平移
π
4
个单位,再向上平移
3
2
个单位,得到函数y=g(x)的图象,求y=g(x)在[0,
π
4
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项都是正数,若a3a15=64,则log2a9等于
 

查看答案和解析>>

同步练习册答案