解:(I)∵f'(x)=x2﹣2(a+1)x+4a
∴f'(3)=9﹣6(a+1)+4a=0得 ![]()
∵
解得:b=﹣4
(II)∵f'(x)=x2﹣2(a+1)x+4a=(x﹣2a)(x﹣2)
令f'(x)=0,即x=2a或x=2.
当a>1时,2a>2,
∴f'(x)>0时,x>2a或x<2,即f(x)的单调递增区间为(﹣∞,2)和(2a,+∞).
当a=1时,f'(x)=(x﹣2)2≥0,即f(x)的单调递增区间为(﹣∞,+∞).
当a<1时,2a<2,∴f'(x)>0时,x<2a或x>2,
即f(x)的单调递增区间为(﹣∞,2a)和(2,+∞).
(Ⅲ)由题意可得:![]()
∴(2a﹣1)(2a+1)<0
∴![]()
∴a的取值范围
科目:高中数学 来源: 题型:
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| OA |
| OB |
| 3 |
| OA |
| OB |
| π |
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ax |
| x2+b |
| ax |
| x2+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com