精英家教网 > 高中数学 > 题目详情
18.如图是一个几何体的三视图(侧试图中的弧线是半圆),则该几何体的体积是(  )
A.8+2πB.8+πC.8+$\frac{2}{3}$πD.8+$\frac{4}{3}$π

分析 根据几何体的三视图,得出该几何体上半部分是正方体,下半部分是圆柱的一半,结合图中数据求出它的体积.

解答 解:根据几何体的三视图得,
该几何体的上半部分是棱长为2的正方体,
下半部分是半径为1,高为2的圆柱的一半,
∴该几何体的体积为
V=23+$\frac{1}{2}$×π×12×2=8+π.
故选:B.

点评 本题考查了利用三视图求几何体体积的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,且$tanB=\frac{{\sqrt{3}ac}}{{{a^2}+{c^2}-{b^2}}}$.
(1)求∠B;
(2)求函数$f(x)=sinx+2sinBcosx,x∈[0,\frac{π}{2}]$的值域及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的函数$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函数.
(Ⅰ)求实数b的值;
(Ⅱ)判断并证明函数f(x)的单调性;
(Ⅲ)若关于x的方程f(x)=m在x∈[0,1]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-1}{2n+3}$,则$\frac{{a}_{9}}{{b}_{10}}$=$\frac{50}{41}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,则lg$\frac{{x}^{2}}{y}$的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,三边长a,b,c,满足a+c=3b,则$tan\frac{A}{2}tan\frac{C}{2}$的值为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若{1,2}⊆A?{1,2,3,4,5},则满足条件的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Sn是数列{an}的前n项和,且an=nsin$\frac{nπ}{3}$(n∈N*),则S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程x2+y2cosα=1,α∈(0,π)表示的曲线不可能是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

同步练习册答案