精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}ax+b,x<0\\{2^x},x≥0\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
(Ⅰ)求f(x)的解析式,并求f(f(-2))的值;
(Ⅱ)请在给定的直角坐标系内,利用“描点法”画出y=f(x)的大致图象.

分析 (Ⅰ)由f(-2)=3,f(-1)=f(1)得$\left\{\begin{array}{l}-2a+b=3\\-a+b=2\end{array}\right.$,解得a,b.
(Ⅱ)1°列表;2°描点;3°连线

解答 解:(Ⅰ)由f(-2)=3,f(-1)=f(1)得$\left\{\begin{array}{l}-2a+b=3\\-a+b=2\end{array}\right.$,
解得a=-1,b=1
所以f(x)=$\left\{\begin{array}{l}-x+1,x<0\\{2^x},x≥0.\end{array}\right.$,
从而f(f(-2))=f(-(-2)+1)=f(3)=23=8;
(Ⅱ)“描点法”作图:1°列表:

x-2-1012
f(x)32124
2°描点;3°连线
f(x)的图象如右图所示:

点评 本题考查了分段函数的解析式及图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设集合 M={x||x|≤2,x∈R},N={x|x2≤4,x∈N},则(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的方程为$\frac{{x}^{2}}{9}$+y2=1,过左焦点作倾斜角为$\frac{π}{6}$的直线交椭圆于A,B两点.
(1)求弦AB的长.
(2)求左焦点F1到AB中点M的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=log2(x-2)-1的图象恒过定点p,则点p的坐标是(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=loga|x+1|在(-1,0)上是增函数,则f(x)在(-∞,-1)上是(  )
A.函数值由负到正且为增函数B.函数值恒为正且为减函数
C.函数值由正到负且为减函数D.没有单调性

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足$\left\{\begin{array}{l}2x+y≤4\\ x-y≥-1\\ x+2y≥2\end{array}\right.$,则z=x-3y的最小值为(  )
A.-2B.-4C.-5D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2分别为椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左右焦点,点P(x,y)在直线y-x-3=0上(x≠-3且$x≠±\sqrt{3}$),直线PF1,PF2的斜率分别为k1、k2,则$\frac{1}{k_2}-\frac{2}{k_1}$的值为(  )
A.1B.$\frac{3}{2}$C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx-$\frac{1}{2}a{x^2}$-bx.
(1)当a=-2,b=3时,求函数f(x)的极值;
(2)令F(x)=f(x)+$\frac{1}{2}a{x^2}+bx+\frac{a}{x}({0<x≤3})$,其图象上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(3)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]内恰有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=\sqrt{1-{2^x}}$的定义域是(  )
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

同步练习册答案