精英家教网 > 高中数学 > 题目详情
与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

【答案】分析:(1)由抛物线C2的定义得y,进而得点M的坐标,代入椭圆的方程可得a,b的值;
(2)由设A(x1,y1),B(x2,y2),Q(x,y),由可得:(1-x1,3-y1)=-λ(x2-1,y2-3).
解答:解:(1)由C2:x2=4y知F1(0,1),设M(x,y)(x<0),因M在抛物线C2上,
故x2=4y
,则②,由①②解得.而点M椭圆上,
故有,即③,又c=1,则b2=a2-1④
由③④可解得a2=4,b2=3,∴椭圆C1的方程为
(2)设A(x1,y1),B(x2,y2),Q(x,y),
可得:(1-x1,3-y1)=-λ(x2-1,y2-3),即
可得:(x-x1,y-y1)=λ(x2-x,y2-y),即
⑤×⑦得:x122x22=(1-λ2)x,⑥×⑧得:y122y22=3y(1-λ2
两式相加得(x12+y12)-λ2(x22+y22)=(1-λ2)(x+3y)
又点A,B在圆x2+y2=3上,且λ≠±1,所以x12+y12=3,x22+y22=3
即x+3y=3,∴点Q总在定直线x+3y=3上.
点评:本题巧妙地将向量、圆、直线、椭圆与抛物线交汇在一起.充分体现了实施新课标后,高考对圆锥线的考查方向与特色--注重直观(数形结合)与整体运算(降低运算量).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市新海高级中学高三(下)3月调研数学试卷(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高中数学综合测试卷(选修1-1)(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年广东省揭阳市普宁市华美实验学校高考数学三模试卷(理科)(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

同步练习册答案