精英家教网 > 高中数学 > 题目详情

已知{an}为等差数列,且a1+a3=8,a2+a4=12.则an=________.

2n
分析:由等差数列的性质可得a2=4,进而可得数列的公差为2,由等差数列的通项公式可得答案.
解答:由等差数列的性质可得2a2=a1+a3=8,解得a2=4,
又a2+a4=12,所以a4=12-4=8,故数列的公差d==2,
故an=a2+(n-2)d=4+2(n-2)=2n,
故答案为:2n
点评:本题考查等差数列的通项公式的求解,利用性质和已知得出a2=4和d=2是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数an的前n项和为SnS10=
3
0
(1+3x)dx
,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数到{an}中,a1=120,公差d=-4,Sn为其前n项和,若Sn≤an(n≥2).则n的最小值为(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为______.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省苏州市高三教学调研数学试卷(解析版) 题型:解答题

已知命题:“在等差数(an)中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为   

查看答案和解析>>

同步练习册答案