精英家教网 > 高中数学 > 题目详情
椭圆的四个顶点A,B,C,D构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )
A.
B.
C.
D.
【答案】分析:根据题意,设出直线AB的方程,利用菱形ABCD的内切圆恰好过焦点,可得原点到直线AB的距离等于半焦距,从而可求椭圆的离心率.
解答:解:由题意,不妨设点A(a,0),B(0,b),则直线AB的方程为:
即bx+ay-ab=0
∵菱形ABCD的内切圆恰好过焦点
∴原点到直线AB的距离为
∴a2b2=c2(a2+b2
∴a2(a2-c2)=c2(2a2-c2
∴a4-3a2c2+c4=0
∴e4-3e2+1=0

∵0<e<1

故选C.
点评:本题重点考查椭圆的几何性质,解题的关键是利用菱形ABCD的内切圆恰好过焦点,得到原点到直线AB的距离等于半焦距.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年重庆市高三上学期第三次月考理科数学试卷(解析版) 题型:填空题

设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建师大附中高二(上)期末数学试卷(理科)(解析版) 题型:选择题

椭圆的四个顶点A,B,C,D构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省保定市高二(上)期末数学试卷(理科)(解析版) 题型:选择题

椭圆的四个顶点A,B,C,D构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年高二(上)期末数学试卷(文科)(解析版) 题型:选择题

椭圆的四个顶点A,B,C,D构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案