精英家教网 > 高中数学 > 题目详情

已知向量数学公式
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)的最大值及取得最大值时的x的取值集合.

解:(1)f(x)==(2cosx+1,cos2x-sinx+1)•(cosx,-1)=2cos2x+cosx-cos2x+sinx-1…(2分)
=cos+sinx…(4分)
=…(6分)
令2kπ+
解得2kπ+
所以,函数.…(9分)
(2)函数f(x)的最大值是
所以,函数f(x)取得最大值.…(12分)
分析:(1)利用向量的数量积,求出f(x)的表达式,然后化简为一个角的一个三角函数的形式,结合正弦函数的单调性,求出函数f(x)的单调递减区间;
(2)结合(1)利用正弦函数的有界性,求函数f(x)的最大值及取得最大值时x的集合.
点评:本题考查平面向量的数量积,三角函数的单调性,三角函数的最值,考查学生计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函数f(x)=a-
1
e1
e2
是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量.

(1)       当

(2)       求上的函数值的范围。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期第三次月考理科数学 题型:解答题

(本小题满分12分)

已知向量,函数·

(1)求函数f(x)的单调递增区间;

(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函

数f(x)的值域.

 

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

已知a、b∈R,向量=(x,1),=(-1,b-x),函数f(x)=a-是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试5-理科-平面向量与解三角形 题型:解答题

 

已知向量m=(),n=(),记f(x)=m•n;

   (1)若f(x)=1,求的值;

   (2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函

        数f(A)的取值范围.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案