精英家教网 > 高中数学 > 题目详情
19.求下列函数的定义域和值域:
(1)y=tan(x+$\frac{π}{4}$);
(2)y=$\sqrt{\sqrt{3}-tanx}$.

分析 根据正切函数的定义域和值域的性质进行求解即可.

解答 解:(1)y=tan(x+$\frac{π}{4}$);
由x+$\frac{π}{4}$≠kπ+$\frac{π}{2}$,得x≠kπ+$\frac{π}{4}$,即函数的定义域为{x|x≠kπ+$\frac{π}{4}$,k∈Z}.函数的值域为(-∞,+∞).
(2)y=$\sqrt{\sqrt{3}-tanx}$.
由$\sqrt{3}$-tanx≥0得tanx≤$\sqrt{3}$,即kπ-$\frac{π}{2}$<x≤kπ+$\frac{π}{3}$,即函数的定义域为(kπ-$\frac{π}{2}$,kπ+$\frac{π}{3}$],k∈Z,
∵$\sqrt{3}$-tanx≥0,∴y≥0,即函数的值域为[0,+∞).

点评 本题主要考查正切函数的定义域和值域求解,要求熟练掌握正切函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x<0}\\{lo{g}_{2}x,x≥0}\end{array}\right.$,则f[f(-3)]=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Sn是等比数列{an}的前n项和,a2=2,a3=$\frac{1}{4}$,则Sn的取值范围是[16,$\frac{128}{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{{4-{2^x}}}{{1+{2^x}}}$,若存在实数a,b,x∈R,a≤f(x)≤b,则b-a的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a)≥f(2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-1≤x<2},B={x|y=$\sqrt{2x+1}$+$\sqrt{3-x}$},求:①A∩B,②A∪B,③(∁RA)∩(∁RB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点.求证:MN⊥EA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正实数x,y满足2x+y-3=0,则$\frac{4y-x+6}{xy}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个等差数列前四项之和与后四项之和分别为26与110,且所有项之和为187,求这数列共有几项?

查看答案和解析>>

同步练习册答案