ÎÒÃÇÖªµÀ£¬y=ax(a£¾0ÇÒa¡Ù1)Óëy=logax(a£¾0ÇÒa¡Ù1)»¥Îª·´º¯Êý¡£Ö»Òª°ÑÆäÖÐÒ»¸ö½øÐÐÖ¸¶Ô»¥»¯£¬¾Í¿ÉÒԵõ½ËüµÄ·´º¯ÊýµÄ½âÎöʽ¡£ÈÎÒâÒ»¸öº¯Êýy=f(x)£¬½«xÓÃy±íʾ³öÀ´ÄÜ·ñµÃµ½ËüµÄ·´º¯Êý£¿¾Ýº¯ÊýµÄ¶¨Ò壺¶ÔÓÚ×Ô±äÁ¿xµÄÿһ¸öÖµy¶¼ÓÐΨһȷ¶¨µÄÖµÓëÖ®¶ÔÓ¦£¬Èç¹û´æÔÚ·´º¯Êý£¬Ó¦ÊǶÔÓÚyµÄÿһ¸öÖµ£¬x¶¼ÓÐΨһȷ¶¨µÄÖµÓëÖ®¶ÔÓ¦£¬¾Ý´Ë̽¾¿ÏÂÁк¯ÊýÊÇ·ñ´æÔÚ·´º¯Êý£¿ÈôÊÇ£¬·´º¯ÊýÊÇʲô£¿Èô·ñ£¬ÎªÊ²Ã´£¿
(1)y=2x+1£»
(2)y=£»
(3)y=x2£»
(4)y=¡£
½â£º(1)¡ßy=2x+1Êǵ¥µ÷Ôöº¯Êý£¬ÓÉy=2x+1½âµÃx=(y-1)£¬
Õâʱ¶ÔÈÎÒây¡ÊR£¬¶¼ÓÐΨһȷ¶¨µÄxÓëÖ®¶ÔÓ¦£¬Ò²¾ÍÊÇxÊÇyµÄº¯Êý£¬
°´Ï°¹ßÓÃx±íʾ×Ô±äÁ¿£¬y±íʾº¯Êý£¬
Ôòy=2x+1µÄ·´º¯ÊýΪy=(x-1)£®
(2)ͬ(1)µÄµÀÀí£¬¡ßy=µ¥µ÷Ôö£¬Ò²´æÔÚ·´º¯Êý£¬ÓÉy=½â³öx=y2£¬
¡ày=µÄ·´º¯ÊýΪy=x2£¬ÒòΪÕâÀïµÄx¾ÍÊÇy=ÖеÄyÇÒy¡Ý0£¬
¡àx¡Ý0£¬¼´·´º¯ÊýΪy=x2(x¡Ý0)£®
(3)¡ßx=¡À1ʱ£¬¶¼ÓÐy=1£¬·´¹ýÀ´¶ÔÓÚy=1£¬xÓÐÁ½¸öÖµÓëÖ®¶ÔÓ¦£¬¹Êy=x2²»´æÔÚ·´º¯Êý£®
(4)ÓÉy=£¬½âµÃx=£¬
¶ÔyµÄÿһ¸öÖµ£¬x¶¼ÓÐΨһֵÓëÖ®¶ÔÓ¦£¬
¹Ê´æÔÚ·´º¯Êý£¬·´º¯ÊýΪy=(x¡Ù2)£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒÃÇÖªµÀ£ºÈôº¯Êýy=f(x)´æÔÚº¯Êýy=f-1(x)£¬ÔòÔ­º¯Êýy=f(x)ÓëÆä·´º¯Êýy=f-1(x)µÄͼÏñ¹ØÓÚÖ±Ïßy=x¶Ô³Æ£»Èôy=f(x)Óëy=f-1(x)µÄͼÏñÓй«¹²µã£¬ÔòijЩ¹«¹²µãҲδ±ØÔÚÖ±Ïßy=xÉÏ£¬ÀýÈ磺f(x)=.

(¢ñ)ÒÑÖªy=f(x)Ϊ¶¨ÒåÓòÉϵÄÔöº¯Êý£¬ÇÒy=f(x)Óëy=f-1(x)µÄͼÏñÓй«¹²µã£¬ÇóÖ¤£ºy=f(x)Óëy=f-1(x)µÄͼÏñµÄ¹«¹²µãÔÚÖ±Ïßy=xÉÏ£»

(¢ò)Éèf(x)=ax(a£¾1),ÊÔÌÖÂÛf(x)Óëf-1(x)µÄͼÏñµÄ¹«¹²µãµÄ¸öÊý.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸