精英家教网 > 高中数学 > 题目详情
如图所示,在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1、x1、x2、4依次成等差数列,而1、y1、y2、8依次成等比数列,则△OP1P2的面积是 (    )

A.1              B.2                C.3                 D.4

A

解析:由1、x1、x2、4依次成等差数列,得.

由1、y1、y2、8依次成等比数列,得

∴S△OP1P2=S△OP2′P2-S△OP1′P1-S梯形P1′P2′P2P1

=x2·y2-x1·y1- (x2-x1)·(y1+y2)=6-2-3=1.故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,| OC |=
3
,点P,Q满足
OP
=
λOA
AQ
=( 1-λ )
AB
  ( λ∈R )
,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若过点(1,0)的直线与点M的轨迹相交于E,F两点,求△AEF的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,反比例函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年湖南省高考适应性测试数学试卷(文科)(解析版) 题型:解答题

如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,,点P,Q满足,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若过点(1,0)的直线与点M的轨迹相交于E,F两点,求△AEF的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学模拟试卷(文科)(解析版) 题型:解答题

如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,,点P,Q满足,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若过点(1,0)的直线与点M的轨迹相交于E,F两点,求△AEF的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省连云港市东海高级中学高考数学考前猜题试卷(1)(解析版) 题型:解答题

如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,,点P,Q满足,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若过点(1,0)的直线与点M的轨迹相交于E,F两点,求△AEF的面积的最大值.

查看答案和解析>>

同步练习册答案