精英家教网 > 高中数学 > 题目详情
已知直线l经过点P(-2,5),且斜率为-
34

(Ⅰ)求直线l的方程;
(Ⅱ)求与直线l切于点(2,2),圆心在直线x+y-11=0上的圆的方程.
分析:(Ⅰ)由直线方程的点斜式,可得直线方程,化为一般式即可;
(Ⅱ)同(Ⅰ)可得过点(2,2)与l垂直的直线方程,联立方程解方程组可得圆心为(5,6),可得半径,可得圆的标准方程.
解答:解:(Ⅰ)由直线方程的点斜式,可得方程为y-5=-
3
4
(x+2)

化为一般式即得所求直线方程为:3x+4y-14=0.…(4分)
(Ⅱ)过点(2,2)与l垂直的直线方程为4x-3y-2=0,…(6分)
x+y-11=0
4x-3y-2=0.
得圆心为(5,6),…(8分)
∴半径R=
(5-2)2+(6-2)2
=5
,…(10分)
故所求圆的方程为(x-5)2+(y-6)2=25.                          …(12分)
点评:本题考查圆的切线方程,涉及直线的点斜式和圆的标准方程,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l经过点P(3,0).
(1)若直线l平行于直线2x-y+1=0,求直线l的方程;
(2)若点O(0,0)和点M(6,6)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:坐标系与参数方程
已知直线l经过点P(2,3),倾斜角α=
π6

(Ⅰ)写出直线l的参数方程.
(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L经过点P(-4,-3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是
x=-4和4x+3y+25=0
x=-4和4x+3y+25=0

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(极坐标与参数方程)
已知直线l经过点P(2,1),倾斜角α=
π4

(Ⅰ)写出直线l的参数方程;
(Ⅱ)设直线l与圆O:ρ=2相交于两点A,B,求线段AB的长度.

查看答案和解析>>

同步练习册答案