精英家教网 > 高中数学 > 题目详情
17.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,则四面体ABCD外接球的表面积为(  )
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

分析 三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.

解答 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,而且AD=$\sqrt{3}$,
三棱柱中,底面边长为1,1,$\sqrt{3}$,外接圆的半径为$\frac{\sqrt{3}}{2sin120°}$=1
∴球的半径为r=$\sqrt{1+\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$
四面体ABCD外接球表面积为:4π×$\frac{7}{4}$=7π.
故选:B.

点评 本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知Sn是数列{an}的前n项和,且an=nsin$\frac{nπ}{3}$(n∈N*),则S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程x2+y2cosα=1,α∈(0,π)表示的曲线不可能是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知记号max{a,b}=$\left\{\begin{array}{l}{a;a≥b}\\{b;a<b}\end{array}\right.$,f(x)=max{tanπx,sinπx},则直线y=$\frac{1}{2}$与g(x)=|f(x)cosπx|的图象在区间[0,n],n∈N*内交点的横坐标之和记为Sn,则Sn=n2-$\frac{n}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察式子:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;
按此规律猜想第五个的等式为cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=x3-6x2+16x-5-sinπx,{an}是公差不为零的等差数列,若$\sum_{i=1}^{10}$f(ai)=110,则$\sum_{i=1}^{10}$ai=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在边长为4的正方形ABCD的边上有一点P,当P点由点B(起点)向点A(终点)沿逆时针方向移动(B→C→D→A)时,三点A、B、P构成△ABP,求:
(1)△ABP的面积y关于点P移动的路程x的函数关系式;
(2)当路程x为多少时面积y有最大值?并求此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)求函数f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有几个?若圆上到直线3x+4y+c=0距离为1的点有4个,求c的取值范围.

查看答案和解析>>

同步练习册答案