精英家教网 > 高中数学 > 题目详情

函数y=log2(x2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是________.


分析:首先把恒成立问题转化为:在[2,+∞)上x2-ax+2>1恒成立,再通过分离参数转化为:在[2,+∞)上恒成立,设,利用导数求出g(x)的单调性,求出g(x)的最小值,即可.
解答:因为函数y=log2(x2-ax+2)在[2,+∞)上恒为正,
所以在[2,+∞)上x2-ax+2>1恒成立,
即:在[2,+∞)上恒成立,

因为x≥2,所以
所以g(x)在[2,+∞)上为增函数,
所以:当x=2时,g(x)的最小值为g(2)=
所以
故答案为
点评:本题考查函数中的恒成立问题,用到了分离参数法,做恒成立问题关键在转化为参数与某个函数的最值比较大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=log2(1+x)+
2-x
的定义域为(  )
A、(0,2)
B、(-1,2]
C、(-1,2)
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=-
2
x
在其定义域上是增函数;        
②函数y=
x2(x-1)
x-1
是偶函数;
③函数y=log2(x-1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若2a=3b<1,则a<b<0;
则上述正确命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=log2(x+2)的图象,只需把函数y=log2(x-1)的图象向(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x+1)+1(x>0)的反函数是
y=2x-1-1(x>1)
y=2x-1-1(x>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称,则f(x)的表达式是
y=log2(3-x)(x<3)
y=log2(3-x)(x<3)

查看答案和解析>>

同步练习册答案