精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=lnx+ax,a∈R
(1)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(2)当a=-1时,$g(x)=f(x)+x+\frac{1}{2x}-m$有两个零点x1,x2,且x1<x2,求证:x1+x2>1.

分析 (1)求出函数的导数,根据函数的单调性求出a的范围即可;
(2)令$t=\frac{x_1}{x_2}$,其中0<t<1,记$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,根据函数的单调性证明即可.

解答 解:(1)因为f(x)=lnx+ax,则${f^'}(x)=\frac{1}{x}+a=\frac{1+ax}{x}$
若函数f(x)=lnx+ax在(1,+∞)上单调递减,则1+ax≤0在(1,+∞)上恒成立,
即当x>1时,$a≤-\frac{1}{x}$恒成立,所以a≤-1.-------------------------------------------------------(4分)
(2)证明:根据题意,$g(x)=lnx+\frac{1}{2x}-m(x>0)$,
因为x1,x2是函数$g(x)=lnx+\frac{1}{2x}-m$的两个零点,
所以$ln{x_1}+\frac{1}{{2{x_1}}}-m=0$,$ln{x_2}+\frac{1}{{2{x_2}}}-m=0$.
两式相减,可得$ln\frac{x_1}{x_2}=\frac{1}{{2{x_2}}}-\frac{1}{{2{x_1}}}$,---------------------------------(6分)
即$ln\frac{x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2{x_2}{x_1}}}$,故${x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2ln\frac{x_1}{x_2}}}$.那么${x_1}=\frac{{\frac{x_1}{x_2}-1}}{{2ln\frac{x_1}{x_2}}}$,${x_2}=\frac{{1-\frac{x_2}{x_1}}}{{2ln\frac{x_1}{x_2}}}$.
令$t=\frac{x_1}{x_2}$,其中0<t<1,则${x_1}+{x_2}=\frac{t-1}{2lnt}+\frac{{1-\frac{1}{t}}}{2lnt}=\frac{{t-\frac{1}{t}}}{2lnt}$.
记$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,-----------------(10分)
则$h'(t)=\frac{{{{(t-1)}^2}}}{t^2}$.
因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即$t-\frac{1}{t}-2lnt<0$.
可知$\frac{{t-\frac{1}{t}}}{2lnt}>1$,故x1+x2>1.-----------------------(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)对于任意实数x满足条件$f({x+2})=\frac{1}{f(x)}$,若f(1)=-5,则f(f(5))=$-\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点${P}({\sqrt{3},\frac{1}{2}})$,离心率为$\frac{{\sqrt{3}}}{2}$,动点${M}({2\sqrt{3},t})$(t>0).
(1)求椭圆的标准方程;
(2)求以OM(O为坐标原点)为直径且被直线$\sqrt{3}x-y-5=0$截得的弦长为$2\sqrt{3}$的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点P(-$\frac{π}{12}$,0),与点P相邻的最高点Q($\frac{π}{6}$,2).
(1)求φ和ω的值.
(2)当x∈(-$\frac{π}{2}$,0)时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知焦点在x轴的椭圆的离心率为0.5,焦距是2,则椭圆的标准方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a为实数,给出命题p:关于x的不等式${({\frac{1}{2}})^{|x|}}≥a$的解集为ϕ,命题q:函数$f(x)=lg({a{x^2}+({a-2})x+\frac{9}{8}})$的定义域为R,若命题p∨q为真,命题p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知B=45°,b=2.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求函数f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
(2)证明:不等式x1-x+(1-x)x≤$\sqrt{2}$,在0<x<1上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在x轴上的椭圆E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)
(1)若0<b≤2,求离心率e的取值范围;
(2)椭圆E内含圆C:x2+y2=$\frac{8}{3}$.圆C的切线l与椭圆E交于A,B两点,满足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O为坐标原点).
①求b2的值;
②求△ABC面积的取值范围.

查看答案和解析>>

同步练习册答案