精英家教网 > 高中数学 > 题目详情

(1)如图所示,证明命题“a是平面π内的一条直线,bπ外的一条直线(b不垂直于π),c是直线bπ上的投影,若ab,则ac”为真.

(2)写出上述命题的逆命题,并判断其真假(不需证明).

(1)见解析(2)逆命题为:a是平面π内的一条直线,bπ外的一条直线(b不垂直于π),c是直线bπ上的投影,若ac,则ab.真命题

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体ABCDE中,ABAD=2,ABADAE⊥平面ABDM为线段BD的中点,MCAE,且AEMC.

(1)求证:平面BCD⊥平面CDE
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,平面中点.

(1)证明://平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.的中点,

(1)求证:
(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,交于点底面的中点.

(1)求证:平面
(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案