精英家教网 > 高中数学 > 题目详情
如图,已知椭圆G:的右准线l1:x=4与x轴交与点M,点A,F2分别是的右顶点和右焦点,且MA=2AF2.过点A作斜率为-1的直线l2交椭圆于另一点B,以AB为底边作等腰三角形ABC,点C恰好在直线l1上.
(1)求椭圆G的方程;
(2)求△ABC的面积.

【答案】分析:(1)由MA=2AF2,得椭圆的离心率为,从而a=2c,又椭圆的右准线l1:x=4,所以,所以a=2,c=1,从而可求椭圆G的方程;
(2)直线l2的方程为y=-x+2,解方程组,可得,所以AB中点,从而可得AB的垂直平分线方程为,由此可求,所以,故可求△ABC的面积.
解答:解:(1)由MA=2AF2,得椭圆的离心率为,即a=2c.
又椭圆的右准线l1:x=4,所以,所以a=2,c=1.
所以求椭圆G的方程为
(2)∵过点A作斜率为-1的直线l2
∴直线l2的方程为y=-x+2,
解方程组,得,即
∵A(2,0),∴
所以AB中点
AB的垂直平分线方程为,即
令x=4,得,即
所以
所以△ABC的面积
点评:本题以椭圆的性质为载体,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形的面积,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:(x-2)2+y2=r2是椭圆
x216
+y2=1
的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的右准线l1:x=4与x轴交与点M,点A,F2分别是的右顶点和右焦点,且MA=2AF2.过点A作斜率为-1的直线l2交椭圆于另一点B,以AB为底边作等腰三角形ABC,点C恰好在直线l1上.
(1)求椭圆G的方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,已知椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r)(b>r>0
(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;
(Ⅱ)设直线y=k1x与椭圆交于C(x1,y1),D(x2,y2)(y2>0),直线y=k2x与椭圆次于G(x3,y3),H(x4,y4)(y4>0).求证:
k1x1x2
x1+x2
=
k1x3x4
x3+x4

(Ⅲ)对于(Ⅱ)中的在C,D,G,H,设CH交x轴于P点,GD交x轴于Q点,求证:|OP|=|OQ|
(证明过程不考虑CH或GD垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆G:数学公式的右准线l1:x=4与x轴交与点M,点A,F2分别是的右顶点和右焦点,且MA=2AF2.过点A作斜率为-1的直线l2交椭圆于另一点B,以AB为底边作等腰三角形ABC,点C恰好在直线l1上.
(1)求椭圆G的方程;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案