精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在平面直角坐标系xOy中,曲线y=x2-2x—3与两条坐标轴的三个交点都在圆C上.若圆C与直线x-y+a=0交于A,B两点,
(1)求圆C的方程;
(2)若,求a的值;
(3)若 OA⊥OB,(O为原点),求a的值.
(1) (x-1)2+(y+1)2=5. (2);(3) a=-1.

试题分析:(1)曲线y=x2-2x—3与y轴的交点为(0,-3),与x轴的交点为(-1,0),(3,0).
故可设圆C的圆心为(1,t),则有12+(t+3)2=(1+1)2+t2,解得t=.
则圆C的半径为.则以圆C的方程为(x-1)2+(y+1)2=5.
(2) , 圆心C到直线x-y+a=0的距离为
,解得
(3)设A(x1,y1),B(x2,y2),其坐标满足方程组:.
消去y,得到方程2x2+2ax+a2+2a-3=0. 由已知可得,判别式Δ=24-16a-4a2>0.
从而x1+x2=-a,x1x2.①
由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,
所以2x1x2+a(x1+x2)+a2=0.②
由①,②得a=1,,满足Δ>0,故a=-1.
点评:典型题,关于圆的考查,往往以这种“连环题”的形式出现,首先求标准方程,往往不难。而涉及在直线与圆的位置关系,往往要利用韦达定理,实现“整体代换”。本题中利用OA⊥OB,可得x1x2+y1y2=0,从而将两根之积代入,方便求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作.设是长为2的线段,点集所表示图形的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,⊙上一点在直径上的射影为,且,则⊙的半径等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,若直线轴相交于点,与轴相交于,且与圆相交所得弦的长为2,为坐标原点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(1)求实数的取值范围;
(2)求圆C 的方程;
(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知方程.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线相交于两点,且(为坐标原点)求的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题11分)已知圆,过原点的直线与圆相交于两点
(1) 若弦的长为,求直线的方程;
(2)求证:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一束光线从点出发经轴反射,到达圆C:上一点的最短路程是(   )
A.4B.5
C.3-1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆为圆心且经过原点O.
(1) 若直线与圆交于点,若,求圆的方程;
(2) 在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标。

查看答案和解析>>

同步练习册答案