精英家教网 > 高中数学 > 题目详情

圆心在曲线数学公式上,且与直线2x+y+1=0相切的面积最小的圆的方程为


  1. A.
    (x-1)2+(y-2)2=5
  2. B.
    (x-2)2+(y-1)2=5
  3. C.
    (x-1)2+(y-2)2=25
  4. D.
    (x-2)2+(y-1)2=25
A
分析:设出圆心坐标,求出圆心到直线的距离的表达式,求出表达式的最小值,即可得到圆的半径长,得到圆的方程,推出选项.
解答:设圆心为

当且仅当a=1时等号成立.
当r最小时,圆的面积S=πr2最小,
此时圆的方程为(x-1)2+(y-2)2=5;
故选A.
点评:本题是基础题,考查圆的方程的求法,点到直线的距离公式、基本不等式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年浙江省高三5月模拟考试理科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线

于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,

求出的斜率范围,若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案