精英家教网 > 高中数学 > 题目详情

设集合P={1,2,3,4,5},对任意kP和正整数m,记f(mk)=,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在kP和正整数m,使得f(mk)=n

证明略


解析:

证明:定义集合A={|mN*kP},其中N*为正整数集。由于对任意kiPk≠i是无理数,则对任意的k1k2P和正整数m1m2当且仅当m1=m2k1=k2。由于A是一个无穷集,现将A中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n,设此数列中第n项为。下面确定nmk的关系。若,则。由m1是正整数可知,对i=1,2,3,4,5,满足这个条件的m1的个数为。从而n==f(mk)。因此对任意nN*,存在mN*kP,使得f(mk)=n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浙江)设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(?UQ)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的二次函数f(x)=ax2-4bx+1
(Ⅰ)设集合P={1,2,3},集合Q={-1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求函数f(x)在区间[1,+∞)上是增函数的概率;
(Ⅱ)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,记A={y=f(x)有两个零点,其中一个大于1,另一个小于1},求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={1,2,3,4,5,6,7,8},P的子集A={a1,a2,a3},其中a3>a2>a1,当满足a3≥a2+2≥a1+5时,我们称子集A为P的“好子集”,则这种“好子集”的个数为
10
10
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-bx+1,设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b.
(1)求函数y=f(x)有零点的概率;
(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

同步练习册答案