精英家教网 > 高中数学 > 题目详情
已知是定义在上的奇函数. 当时,,则不等式的解集用区间表示为    
∵当时,,令,∴,又是定义在上的奇函数,∴,∴,即时,. 要,则
,解得,∴不等式的解集用区间为
.
【考点定位】分段函数,函数的奇偶性,一元二次不等式的解法. 考查计算能力.中等题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当点时,的方程为,求实数的值;
(Ⅲ)设切线的斜率分别为,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,证明:
(Ⅰ)对每个,存在唯一的,满足
(Ⅱ)对任意,由(Ⅰ)中构成的数列满足.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数处取最小值, 则=(  )
A.1+B.1+C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设[x]表示不大于x的最大整数, 则对任意实数x, y, 有 (    )
A.[-x] = -[x]B.[2x] = 2[x]
C.[x+y]≤[x]+[y]D.[x-y]≤[x]-[y]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列命题中假命题的序号是                 
是函数的极值点;
②三次函数有极值点的充要条件是
③奇函数在区间上单调递减.
④若双曲线的渐近线方程为,则其离心率为2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各组函数中,表示同一函数的是(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案