精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\frac{1}{x-1}$+lg(x+1)的定义域为(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.R

分析 由分式的分母不为0,对数式的真数大于0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{x-1≠0}\\{x+1>0}\end{array}\right.$,解得x>-1且x≠1.
∴函数f(x)=$\frac{1}{x-1}$+lg(x+1)的定义域为(-1,1)∪(1,+∞).
故选:C.

点评 本题考查函数的定义域及其求法,考查了不等式组的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线y=$\frac{1}{2}$与曲线y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则$\overrightarrow{|{M_1}{M_{13}}}$|等于(  )
A.B.C.12πD.13π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知5名发热感冒患者中,有1人被H7N9禽流感病毒感染,需要通过化验血液来确定谁是H7N9禽流感患者,血液化验结果呈阳性的即为普通感冒患者,呈阴性的即为禽流感患者,下面是两种化验方案:
方案甲:逐个化验,知道能确定禽流感患者为止;
方案乙:先任选3人,将他们的血液混在一起化验,若结果呈阴性,则表明禽流感患者在他们3人之中,然后再逐个化验,直到确定禽流感患者为止;若结果呈阳性,则在另外2人中任选1人化验.
(1)求依方案乙所需化验次数恰好为2的概率;
(2)试比较两种方案,哪种方案有利于尽快查找到禽流感患者.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=-2x-1
(1)求出函数f(x)的解析式;
(2)当x∈[0,1]时,求出f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=2x2-ax+3有一个零点为$\frac{3}{2}$,则f(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等比数列{an}中,a1+a4=20,a2+a5=40,求它的前6项和s6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在矩形 OABC中,$\overrightarrow{{A}{B}}=3\overrightarrow{{A}{E}}$,$\overrightarrow{{B}C}=3\overrightarrow{FC}$,若$\overrightarrow{{O}{B}}=λ\overrightarrow{{O}{E}}+μ\overrightarrow{{O}F}$(λ,μ∈R),则λμ等于(  )
A.$\frac{9}{4}$B.$\frac{9}{16}$C.$\frac{4}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x-2|,方程a[f(x)]2-f(x)+1=0有四个不同的实数解,则实数a的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=log2x,则f-1(x)满足(  )
A.f-1(2x)=2f-1(x)B.f-1(2x)=$\frac{1}{2}$f-1(x)C.f-1(2x)=[f-1(x)]2D.f-1(2x)=[f-1(x)]${\;}^{\frac{1}{2}}$

查看答案和解析>>

同步练习册答案