精英家教网 > 高中数学 > 题目详情
函数y=ax-2+1(a>0,且a≠1)的图象经过一个定点,则该定点的坐标是
(2,2)
(2,2)
分析:利用a0=1(a≠0),取x=2,得f(2)=2,即可求函数f(x)的图象所过的定点.
解答:解:当x=2时,f(2)=a2-2+1=a0+1=2,
∴函数y=ax-2+1的图象一定经过定点(2,2).
故答案为:(2,2).
点评:本题考查了含有参数的函数过定点的问题,自变量的取值使函数值不含参数即可求出其定点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、函数y=ax-2+1(a>0且a≠1)的图象恒过定点
(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

5、函数y=ax-2+1(a>0且a≠1)的图象必经过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax-2+1(a>0,a≠0)不论a为何值,恒过定点为
(2,2)
(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax+2-1(a>0且a≠1)的图象过定点
(-2,0)
(-2,0)

查看答案和解析>>

同步练习册答案