精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)对于任意实数x都有f(x)=f(398-x)=f(2158-x)=f(3214-x),问:函数值列f(0),f(1),f(2),…,f(999)中最多有多少个不同的值?

分析 根据已知分析出函数的对称性和周期性,进而得到答案.

解答 解:∵f(x)=f(398-x),
∴函数f(x)的图象关于直线x=199对称,
同理,函数f(x)的图象也关于直线x=1079和直线x=1607对称,
由于对称轴之间相差的半个周期的整数倍,
且1079-199=880,1607-1079=528,
880和528的最大公约数为:176,
故函数f(x)的最大周期为352,
在同一周期中函数值列最多有177个不同的值.

点评 本题考查的知识点是函数的对称性和周期性,正确理解对称轴之间相差的半个周期的整数倍,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的两个焦点分别为F1($-\sqrt{10}$,0),F2($\sqrt{10}$,0),且椭圆C过点P(3,2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)与直线OP平行的直线交椭圆C于A,B两点,求证:直线PA,PB与y轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为$\frac{2}{5}$,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从地平面A、B、C三点测得某山顶的仰角均为15°,设∠BAC=30°,而BC=200m,求山高(结果精确到0.1m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,a1=1,当n≥2时,有an=3an-1+2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1,F2是椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1(m>2)的左,右焦点,点P在椭圆上,若|PF1|•|PF2|=2$\sqrt{3}$m,则该椭圆离心率的取值范围为$[\frac{\sqrt{7}-\sqrt{3}}{2},\frac{\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线x-2y+2$\sqrt{2}$=0与椭圆$\frac{{x}^{2}}{4}$+y2=1的位置关系是直线与椭圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知xe-f(x)=1-e-x,0<x<m,求证f(x)<$\frac{m}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)求函数f(x)的定义域;
(2)写出函数f(x)的值域;
(3)判断f(x)的奇偶性,并加以证明;
(4)判断f(x)的单调性,并加以证明.

查看答案和解析>>

同步练习册答案