精英家教网 > 高中数学 > 题目详情

【题目】7位歌手(17号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:

组别

A

B

C

D

E

人数

50

100

150

150

50

1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.

组别

A

B

C

D

E

人数

50

100

150

150

50

抽取人数


6




2)在(1)中,若AB两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

【答案】(1) 如下表:

组别

A

B

C

D

E

人数

50

100

150

150

50

抽取人数

3

6

9

9

3

(2)

【解析】试题(1)分层抽样是按照每一层的个体数之比进行抽样,易得ACDE四组抽取的人数;(2)由(1)知A组抽取3人其中有2人支持1号歌手,B组抽取6人其中2人支持1号歌手.运用列举法知,从这两组被抽到的评委中分别任选1人共有18种不同的结果,其中这两人都支持1号歌手的共有4种不同的结果,然后由古典概型的概率计算即可求解.

试题解析:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:

组别

A

B

C

D

E

人数

50

100

150

150

50

抽取人数

span>3

6

9

9

3

2)记从A组抽到的3个评委为a1a2a3,其中a1a2支持1号歌手;从B组抽到的6个评委为b1b2b3b4b5b6,其中b1b2支持1号歌手.从{a1a2a3}{b1b2b3b4b5b6}中各抽取1人的所有结果为:

由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1a1b2a2b1a2b24种,故所求概率p

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数f(x)-g(x)必有零点;

(2)设函数G(x)=f(x)-g(x)-1

①若函数G(x)有两相异零点且上是减函数,求实数m的取值范围。

②是否存在整数a,b使得的解集恰好为若存在,求出a,b的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜千克后,蔬菜上残留的农药(单位:微克)的统计表:

(1)在下面的坐标系中,描出散点图,并判断变量是正相关还是负相关;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值,完成以下表格(填在答题卡中),求出的回归方程.(保留两位有效数字);

(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)(附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的抛物线的标准方程.

(1)过点.

(2)焦点在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,点在线段上, ,沿直线翻折成,使点在平面上的射影落在直线上.

)求证:直线平面

)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,,表示空间中三条不同的直线,表示平面, 给出下列命题:

,, ; ② ,, ;

,, ; ④ , , .

其中真命题的序号是( )

A. ①② B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题“关于的不等式对任意恒成立”,命题“函数在区间上是增函数”.

(1)若为真,求实数的取值范围;

(2)若为假,为真,求实数的取值范围.

查看答案和解析>>

同步练习册答案