精英家教网 > 高中数学 > 题目详情
函数y=2-x+x2-4的零点个数为
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:要判断函数f(x)=2-x+x2-4的零点的个数,即函数y=2-x与函数y=-x2+3的图象的交点个数,数形结合,即可得到答案.
解答: 解:函数y=2-x+x2-4的零点个数,
即函数y=2-x和函数y=4-x2 的图象的交点个数,
数形结合可得,函数y=2-x的图象(蓝色部分)
和函数y=4-x2 的图象(红色部分)的交点个数为2,
故答案为:2.
点评:本题主要考查方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)的图象上存在不同两点A,B,设线段AB的中点为M(x0,y0),使得f(x)在点(x0,f(x0))处的切线l与直线AB平行或重合,则称切线l为函数f(x)的“平衡切线”.则函数f(x)=2aln(x+1)+x2-2x的“平衡切线”的条数为(  )
A、2条或无数条
B、1条或无数条
C、0条或无数条
D、2条或0条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+2x-2,x≤1
-
1
x
,1<x≤2
ax+a-1,x>2

(1)若a=1,求方程|f(x)|=5的解.
(2)若f(x)在(-∞,+∞)是单调递增的,求实数a的范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

 某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”,求从这16人中随机选取2人,至多有1人是“极幸福”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an-+1=2(1+
1
n
2an
(1)求数列{an}的通项公式;
(2)设bn=(An2+Bn+C)•2n,试推断是否存在常数A、B、C,使对于一切n∈N*都有an=bn+1-bn成立?若存在,求出A,B,C的值;若不存在,说明理由.
(3)求:
n
n=1
an

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法,其中正确命题的序号为
 

①若函数f(x)=x(x-c)2在x=2处有极大值,则c=2实数或6;
②对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有f(0)+f(2)>2f(1);
③若函数f(x)=x3-3x在(a2-17,a)上有最大值,则实数a的取值范围为(-1,4);
④已知函数f(x)是定义在R上的奇函数f(1)=0,xf′(x)-f(x)>0(x>0),则不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面的数表序列:

其中表n(n=1,2,3…)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(Ⅰ)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将此结论推广到表n(n≥3)(不要求证明);
(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:
b3
b1b2
+
b4
b2b3
+…+
bn+2
b nbn+1
   (n∈N*);
(Ⅲ)已知当n∈N*,?n≥6,不等式(1-
m
n+3
)<(
1
2
m(其中m=1,2,3,…,n)成立,求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=an+ln(1+
1
n
),则an=(  )
A、2+ln n
B、2+(n-1)ln n
C、2+n ln n
D、1+n+ln n

查看答案和解析>>

科目:高中数学 来源: 题型:

中山纪念中学高二A、B两个班参加了2012年的“广州一模数学考试”,按照成绩大于等于125分为“优秀”,成绩小于125分为“非优秀”,根据调查这两个班的数学成绩得到的数据,所绘制的二维条形图如图.
(Ⅰ)根据图中数据,制作2×2列联表;
(Ⅱ)计算随机变量K2的值(精确到0.001)
(Ⅲ)判断在多大程度上可以认为“成绩与班级有关系”?(温馨提示:答题前请仔细阅读卷首所给的计算公式及其参考值)

查看答案和解析>>

同步练习册答案