精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:直线AE⊥平面A1D1E;
(2)求三棱锥A-A1D1E的体积;
(3)求二面角E-AD1-A1的平面角的大小.
分析:(1)证出AE⊥A1E,AE⊥A1D1,则可证明AE⊥平面A1D1E.
 (2)VA-A1D1E=
1
3
SA1D1E•AE
,代入数据计算即可.
(3)取AA1的中点O,过O在平面ADD1A1中作OF⊥AD1,交AD1于F,连EF,∠EFO为二面角E-AD1-A1的平面角.在△AFO中 求解即可.
解答:解:(1)依题意:AE⊥A1E,AE⊥A1D1,则AE⊥平面A1D1E.
(2)VA-A1D1E=
1
3
SA1D1E•AE=
1
3
×
1
2
×1×
2
×
2
=
1
3

(3)取AA1的中点O,连OE,则EO⊥AA1、EO⊥A1D1
所以EO⊥平面ADD1A1
过O在平面ADD1A1中作OF⊥AD1,交AD1于F,连EF,则AD1⊥EF,
所以∠EFO为二面角E-AD1-A1的平面角.
在△AFO中,OF=OA•sin∠OAF=OA•
A1D1
AD1
=
5
5

tan∠EFO=
5
点评:本题主要考查空间角,体积的计算,线面垂直,面面垂直的定义,性质、判定,考查了空间想象能力、计算能力,分析解决问题能力.空间问题平面化是解决空间几何体问题最主要的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求点D到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 则三棱锥A1-ABC的体积为(  )
A、10B、20C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCD-A1B1C1D1,它是由一个长方体ABCD-A'B'C'D'切割而成,这个长方体的高为b,底面是边长为a的正方形,其中顶点A1,B1,C1,D1均为原长方体上底面A'B'C'D'各边的中点.
(1)若多面体面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(2)若a=4,b=2,求该多面体的体积;
(3)当a,b满足什么条件时AD1⊥DB1,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面ADE;
(2)求三棱锥A1-ADE的体积.

查看答案和解析>>

同步练习册答案