(本小题满分13分
已知函数
,
,其中
R
(Ⅰ)讨论
的单调性
(Ⅱ)若
在其定义域内为增函数,求正实数
的取值范围
(Ⅲ)设函数
, 当
时,若
,
,总有
成立,求实数
的取值范围
解:(Ⅰ)
的定义域为
,且
,
----------------1分
①当
时,
,
在
上单调递增;
----------------2分
②当
时,由
,得
;由
,得
;
故
在
上单调递减,在
上单调递增.
----------------4分
(Ⅱ)
,
的定义域为![]()
----------------5分
因为
在其定义域内为增函数,所以
,![]()
![]()
而
,当且仅当
时取等号,
所以
----------------8分
(Ⅲ)当
时,
,![]()
由
得
或![]()
当
时,
;当
时,
.
所以在
上,
----------------10分
而“
,
,总有
成立”等价于
“
在
上的最大值不小于
在
上的最大值”
而
在
上的最大值为![]()
所以有
-----------------------------------------------------------------------------12分
![]()
![]()
![]()
所以实数
的取值范围是
------------------------------------------------------------13分
【解析】略
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com