精英家教网 > 高中数学 > 题目详情
16.设a=22.5,b=log${\;}_{\frac{1}{2}}$2.5,c=($\frac{1}{2}$)2.5,则a,b,c之间的大小关系是(  )
A.c>b>aB.c>a>bC.a>c>bD.b>a>c

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=22.5>1,b=log${\;}_{\frac{1}{2}}$2.5<0,c=($\frac{1}{2}$)2.5∈(0,1),
∴a>c>b,
故选:C.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上奇函数,又f(2)=0,若x>0时,xf′(x)+f(x)>0,则不等式xf(x)>0的解集是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l:ax+y-4=0过点(-1,2),则直线l的斜率为(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知点D为AB边的中点,点N在线段CD上,且$\overrightarrow{CN}$=2$\overrightarrow{ND}$,若$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ$\overrightarrow{AB}$,则λ=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的图象向左平移$\frac{π}{3}$个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质②③④.(填入所有正确性质的序号)
①最大值为$\sqrt{3}$,图象关于直线x=-$\frac{π}{3}$对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点($\frac{π}{4}$,0)对称;
⑤在(0,$\frac{π}{3}$)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x>1},B={x|-1<x<2},则A∩B=(  )
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.选择合适的抽样方法抽样,写出抽样过程.
(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样.
(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ \frac{1}{{{2^{x-1}}}},x≤1\end{array}\right.$,则f(f(4))=(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l:y=$\sqrt{3}$x与圆C:x2-4x+y2=0相交于A,B两点,则弦长|AB|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案