精英家教网 > 高中数学 > 题目详情
3.已知映射f:A→B,其中A={x|x>0},B=R,对应法则f:x→-x2+2x,对于实数k∈B,在集合A中存在两个不同的原像,则k的取值范围为(  )
A.k>0B.k<1C.0<k≤1D.0<k<1

分析 根据映射的意义知,对应法则f:x→y=-x2+2x,对于实数k∈B在集合A中存在两个不同的原像,这说明对于一个y的值,有两个x和它对应,根据二次函数的性质,得到结果.

解答 解:y=-x2+2x=-(x2-2x+1)+1,
∵对于实数k∈B在集合A中存在两个不同的原像,
∴0<k<1,
故选D.

点评 本题考查映射的意义,考查二次函数的值域,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是两个不共线的向量,且$\overrightarrow a=\overrightarrow{e_1}+m\overrightarrow{e_2}$与$\overrightarrow b=-3\overrightarrow{e_1}-\overrightarrow{e_2}$共线,则m=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则下列正确的是(  )
A.p∨q为真B.p∧q为真C.p∨q为假D.q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}中,a1+a2=3,a3+a4=12,则a5+a6=(  )
A.3B.15C.48D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若过点p(1,$\sqrt{3}$)作圆O:x2+y2=1的两条切线,切点分别为A、B两点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l1,l2方程分别为2x-y=0,x-2y+3=0,且l1,l2的交点为P.
(1)求过点P且与直线x+3y-5=0垂直的直线方程;
(2)若直线l过点P,且坐标原点到直线l的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}满足a1=2,a2=1,并且$\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}-\frac{1}{{{a_{n+1}}}}(n≥2)$.则a10+a11=(  )
A.$\frac{19}{2}$B.$\frac{21}{2}$C.$\frac{21}{55}$D.$\frac{23}{66}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{sin2x-cos2x+1}{2sinx}$.
(1)求f(x)的定义域;
(2)求f(x)的取值范围;
(3)设α为锐角,且$tan\frac{α}{2}=\frac{1}{2}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线C1:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$( t 为参数),曲线C2:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(r>0,θ为参数).
(1)当r=1时,求C 1 与C2的交点坐标;
(2)点P 为曲线 C2上一动点,当r=$\sqrt{2}$时,求点P 到直线C1距离最大时点P 的坐标.

查看答案和解析>>

同步练习册答案