精英家教网 > 高中数学 > 题目详情

设n∈,k∈N,且0≤k≤n,则+…+等于

[  ]

A.2n
B.2n-1
C.(-1)n
D.1
答案:D
解析:

二项式定理 逆用令a=2,b=-1可得


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有n(n≥3,n∈N*)个首项为1,项数为n的等差数列,设其第m(m≤n,m∈N*)个等差数列的第k项为amk(k=1,2,3,…,n),且公差为dm.若d1=1,d2=3,a1n,a2n,a3n,…,ann也成等差数列.
(Ⅰ)求dm(3≤m≤n)关于m的表达式;
(Ⅱ)将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9)…,(每组数的个数组成等差数列),设前m组中所有数之和为(cm4(cm>0),求数列{2cmdm}的前n项和Sn
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式
150
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是递增数列,其前n项和为Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求数列{an}的通项an
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由;
(Ⅲ)设bn=an-
n-3
2
,cn=
2(n+3)an
5n-1
,若对于任意的n∈N*,不等式
5
m
31(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
1
cn+1+n-1
≤0恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)设Sn是数列{an}的前n项和,对任意n∈N*Sn=qan+1(q>0,q≠1),m,k∈N*,且m≠k
(1)求数列{an}的通项公式an
(2)试比较Sm+k
1
2
(S2m+S2k)
的大小
(3)当q>1时,试比较
2
Sm+k
1
S2m
+
1
S2k
的大小.

查看答案和解析>>

同步练习册答案