精英家教网 > 高中数学 > 题目详情
若f(x)=-x2+2ax在区间[0,1]上是增函数,在区间[2,3]上是减函数,则实数a的取值范围是(  )
分析:由已知中f(x)=-x2+2ax在区间[0,1]上是增函数,在区间[2,3]上是减函数,结合二次函数在对称轴两侧单调性相反,可得1≤a≤2
解答:解:∵f(x)=-x2+2ax在区间[0,1]上是增函数,
在区间[2,3]上是减函数,
∴函数的对称轴x=a满足
1≤a≤2
故实数a的取值范围是[1,2]
故选C
点评:本题考查的知识点是二次函数的性质,其中二次函数性质最关键是对称轴两侧的单调性及函数图象的开口方向
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24、(选做题)选修4-5:不等式选讲
已知|x1-2|<1,|x2-2|<1.
(Ⅰ)求证:|x1-x2|<2;
(Ⅱ)若f(x)=x2-x+1,求证:|x1-x2|≤|f(x1)-f(x2)|≤5|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-2x-4lnx,则f(x)的单调递增区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2+2(a-1)x+2在区间(-∞,2)上是减函数,则实数a的范围是
a≤-1
a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“紧密函数”.若f(x)=x2-3x+2与g(x)=mx-1在[1,2]上是“紧密函数”,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-cosx,x∈[-
π
2
π
2
],设g(x)=|f(x)|-
1
2
,则函数g(x)的零点个数为(  )

查看答案和解析>>

同步练习册答案