精英家教网 > 高中数学 > 题目详情
如图所示,三棱柱ABC-A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=60
AC1与A1C相交于0.
(1)求证.BO上面AAlClC;
(2)求三棱锥C1-ABC的体积;
(3)求二面角A1-B1C1-A的余弦值.

【答案】分析:(1)由已知中AB=AC=AA1=2,,∠AAlCl=∠BAC1=60,AC1与A1C相交于0.结合菱形的对角线互相垂直,正三角形三线合一,可证得BO⊥AC1,再由面ABC1⊥面AAlClC,及面面垂直的性质定理可得BO上面AAlClC;
(2)根据等体积法及(1)中结论,可得,求出棱锥的底面面积及高,代入棱锥体积公式,可得答案.
(3)法一:以O为坐标原点建系,分别求出平面A1B1C1和平面B1C1A的法向量,代入向量夹角公式,可得答案.
法二:连接AB1交A1B与F,作FG∥C1O交B1C1于G,连接A1G,根据二面角的平面角的定义,可得∠A1GF即为二面角A-B1C1-A1的平面角,解三角形A1GF可得答案.
解答:证明:(1)由题意得四边形AA1C1C为菱形,又∠AAlCl=60
∴△AAlCl为正三角形,即AC1=AA1
又∵AB=AA1,∴AC1=AB,
又∠BAC1=60
∴△BAlCl为正三角形,
又∵O为AC1的中点
∴BO⊥AC1
又面面ABC1⊥面AAlClC,
∴BO上面AAlClC                               (5分)
(2)由(1)得
(8分)
(3)(法一)以O为坐标原点建系如图,则(10分)
∴平面A1B1C1的一个法向量为
平面B1C1A的一个法向量为
设二面角A1-B1C1-A的平面角为θ,
(13分)
(法二)连接AB1交A1B与F,易得C1O⊥A1F,AB1⊥A1F
∴A1F⊥平面B1C1A,又C1O⊥OF,
作FG∥C1O交B1C1于G,连接A1G
得FG⊥B1C1,A1G⊥B1C1
则∠A1GF即为二面角A-B1C1-A1
易得FG=1,,故
cos∠A1GF=                                              (13分)
点评:本题考查的知识点是棱锥的体积,直线与平面垂直的判定,二面角的求法,其中(1)的关键是根据已知条件,确定线线垂直,(2)的关键是利用等体积法将三棱锥C1-ABC的体积进行转化,(3)的关键是建立空间坐标系,将二面角问题转化为向量夹角问题或确定出二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1、AD1于点B1、P,作CC1∥AA1,分别交A1D1、AD1于点C1、Q,将该正方形沿BB1、CC1折叠,使得DD1与AA1重合,构成如图所示的三棱柱ABC-A1B1C1
(1)求证:AB⊥平面BCC1B1
(2)求四棱锥A-BCQP的体积;
(3)求二面角A-PQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)如图所示,三棱柱ABC-A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=600
AC1与A1C相交于0.
(1)求证.BO上面AAlClC;
(2)求三棱锥C1-ABC的体积;
(3)求二面角A1-B1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正三棱柱ABCA1B1C1的底面边长为a,侧棱长为,若经过对角线AB1且与对角线BC1平行的平面交上底面一边A1C1于点D.

(1)确定点D的位置,并证明你的结论;

(2)求二面角A1 AB-1D的大小.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练14练习卷(解析版) 题型:解答题

如图所示,直三棱柱ABCA1B1C1,D,E分别是AB,BB1的中点.

(1)证明:BC1∥平面A1CD;

(2)AA1=AC=CB=2,AB=2,求三棱锥CA1DE的体积.

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:选择题

如图所示,在三棱柱ABC- A1B1C1中, AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是 (    )

 

 

A.45°                   B.60°

C.90°                   D.120°

 

查看答案和解析>>

同步练习册答案