精英家教网 > 高中数学 > 题目详情
证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
解(1)考虑到结构特征,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立.
(2)证明:当an2,bn2,cn2成等差数列,则bn2-an2=cn2-bn2
分解得:(bn+an)(bn-an)=(cn+bn)(cn-bn
选取关于n的一个多项式,4n(n2-1)做两种途径的分解4n(n2-1)=(2n-2)(2n2+2n)=(2n2-2n)(2n+2)4n(n2-1)
对比目标式,构造
an=n2-2n-1
bn=n2+1
cn=n2+2n-1
(n≥4)
,由第一问结论得,等差数列成立,
考察三角形边长关系,可构成三角形的三边.
下证互不相似.
任取正整数m,n,若△m,△n相似:则三边对应成比例
m2-2m-1
n2-2n-1
=
m2+1
n2+1
=
m2+2m-1
n2+2n-1

由比例的性质得:
m-1
n-1
=
m+1
n+1
?m=n
,与约定不同的值矛盾,故互不相似.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题分项版理科数学之专题十五 推理与证明 题型:解答题


证明以下命题:
(1)对任一正整数,都存在正整数,使得成等差数列;
(2)存在无穷多个互不相似的三角形,其边长为正整数且成等差数列.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(江西卷)解析版(理) 题型:解答题

 

证明以下命题:

(1)  对任一正整a,都存在整数b,c(b<c),使得成等差数列。

(2)  存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明以下命题:

(1)对任一正整数,都存在正整数,使得成等差数列;

(2)存在无穷多个互不相似的三角形,其边长为正整数且成等差数列.

查看答案和解析>>

同步练习册答案