精英家教网 > 高中数学 > 题目详情

(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为

(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率

(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;

(Ⅱ)设直线轴、轴分别交于点, 求证:为定值.

 

【答案】

(Ⅰ)

(ⅱ)

(Ⅱ)为定值,定值是

【解析】解:(Ⅰ)(ⅰ)∵ 圆过椭圆的焦点,圆

,∴ ,∴ ,∴. ………… 3分                            

(ⅱ)由及圆的性质,可得,∴

.…………………………………… 8分

(Ⅱ)设,则

整理得

, ∴方程为:方程为:

都过点,∴

直线方程为   

,得,令,得

为定值,定值是.      ----------------13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案