精英家教网 > 高中数学 > 题目详情

小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.

(1) .
(2) X的概率分布列为

X
0
1000
3000
6000
P




 
X的数学期望EX=0×+1000×+3000×+6000×=2160.

解析试题分析:(1)设小王过第一关但未过第二关的概率为P1,
.        (4分)
(2)X的取值为0,1000,3000, 6000,则P(X=0)=,
P(X=1000)=, P(X=3000)=,
P(X=6000)=,
∴X的概率分布列为

X
0
1000
3000
6000
P




 
(10分)(错一列扣2分,扣完为止)
∴X的数学期望EX=0×+1000×+3000×+6000×=2160.  (12分)
考点:本题主要考查相互独立事件的概率计算,分布列及数学期望。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。相互独立事件概率的计算问题,数学期望的计算,关键是计算要细心。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


现有长分别为的钢管各根(每根钢管质地均匀、粗细相同且附有不同的编号),从中随机抽取根(假设各钢管被抽取的可能性是均等的,),再将抽取的钢管相接焊成笔直的一根.
(1)当时,记事件{抽取的根钢管中恰有根长度相等},求
(2)当时,若用表示新焊成的钢管的长度(焊接误差不计),①求的分布列;
②令,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一家化妆品公司于今年三八节期间在某社区举行了为期三天的“健康使用化妆品知识讲座”.每位社区居民可以在这三天中的任意一天参加任何一个讨论,也可以放弃任何一个讲座(规定:各个讲座达到预先设定的人数时称为满座).统计数据表明,各个讲座各天满座的概率如下表:

 
洗发水讲座
洗面奶讲座
护肤霜讲座
活颜营养讲座
面膜使用讲座
3月8日





3月9日





3月10日





(1)求面膜使用讲座三天都不满座的概率;
(2)设3月9日各个讲座满座的数目为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一袋中有6个黑球,4个白球.
(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球个数X的分布列、期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某某种饮料每箱6听,如果其中有两听不合格产品.
(1)质检人员从中随机抽出1听,检测出不合格的概率多大?;                    
(2)质检人员从中随机抽出2听,设为检测出不合格产品的听数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲设计了一个摸奖游戏,在一个口袋中装有同样大小的10个球,分别标有数字0,1,2,……9这十个数字,摸奖者交5元钱可参加一回摸球活动,一回摸球活动的规则是:摸奖者在摸球前先随机确定(预报)3个数字,然后开始在袋中不放回地摸3次球,每次摸一个,摸得3个球的数字与预先所报数字均不相同的奖1元,有1个数字相同的奖2元,2个数字相同的奖10元,3个数字相同的奖50元,设ξ为摸奖者一回所得奖金数,求ξ的分布列和摸奖人获利的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知关于x的一元二次函数,分别从集合PQ中随机取一个数ab得到数列
(1)若,列举出所有的数对,并求函数有零点的概率;
(2)若,求函数在区间上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品。现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(1)求第一次取到不合格品,且第二次取到的是合格品的概率;
(2)求至少有一次取到不合格品的概率。

查看答案和解析>>

同步练习册答案