精英家教网 > 高中数学 > 题目详情
17.在正方体中ABCD-A1B1C1D1,若G点是△BA1D的重心,且$\overrightarrow{AG}$=x$\overrightarrow{AD}$+y$\overrightarrow{AB}$+z$\overrightarrow{C{C}_{1}}$,则x+y+z的值为(  )
A.3B.1C.-1D.-3

分析 利用空间向量加法法则求解.

解答 解:2$\overrightarrow{AO}$=$\overrightarrow{AB}+\overrightarrow{AD}$,$\overrightarrow{OG}=\frac{1}{3}\overrightarrow{OA}$,$\overrightarrow{O{A}_{1}}$=$\overrightarrow{OA}+\overrightarrow{A{A}_{1}}$,
∴$\overrightarrow{AG}$=$\overrightarrow{AO}+\overrightarrow{OG}$
=$\overrightarrow{AO}+\frac{1}{3}\overrightarrow{O{A}_{1}}$
=$\overrightarrow{AO}+\frac{1}{3}(\overrightarrow{OA}+\overrightarrow{A{A}_{1})}$
=$\frac{2}{3}\overrightarrow{AO}+\frac{1}{3}\overrightarrow{A{A}_{1}}$
=$\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}+\frac{1}{3}\overrightarrow{C{C}_{1}}$,
∵$\overrightarrow{AG}$=x$\overrightarrow{AD}$+y$\overrightarrow{AB}$+z$\overrightarrow{C{C}_{1}}$,
∴x+y+z=$\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$=1.
故选:B.

点评 本题考查代数式求和,是基础题,解题时要认真审题,注意空间向量加法法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.集合M={x|0<x≤3},N={x|0<x≤2},则a∈M是a∈N的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=\frac{1}{x}$的图象与函数y=3sinπx(-1≤x≤1)的图象所有交点的横坐标与纵坐标的和等于(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量组中,能作为平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直角坐标系xoy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ=1.直线l与曲线C交于A,B两点.
(1)求|AB|的长;     
(2)若P点的极坐标为(1,$\frac{π}{2}$),求AB中点M到P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积(  )
A.24πB.21 πC.33πD.39 π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=alnx-bx2(x>0),若函数y=f(x)在x=1处与直线y=-1相切.
(1)求实数a,b的值;
(2)求函数y=f(x)在$[{\frac{1}{e},e}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线l:5ax-5y-a+3=0(a∈R) 的图象必过定点($\frac{1}{5},\frac{3}{5}$).

查看答案和解析>>

同步练习册答案