科目:高中数学 来源:2015届福建省高一下学期第一学段考试数学试卷(解析版) 题型:解答题
设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,则称点B为点A的“相关点”,记作:B=f(A).
(1)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(2)已知点H(9,3),L(5,3),若点M满足M=f(H),L=f(M),求点M的坐标;
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)为一个定点, 若点Pi满足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一第二学期期中考试数学试卷(解析版) 题型:解答题
已知函数f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二问中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴当2x-
=-
,即x=0时,f(x)min=-
,
当2x-
=
,
即x=
时,f(x)max=1
第三问中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用构造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的减区间是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴当2x-
=-
,即x=0时,f(x)min=-
, ……………………8分
当2x-
=
,
即x=
时,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com