精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象由函数y=sinx的图象经过怎样的变换得到?(写出变换过程)
(3)在△ABC中,若数学公式,求tanA的值.

解:(1)∵==1-=1+sin2x,
=sin2x+=
所以f(x)的最小正周期T==π,
,解得
∴函数f(x)的单增区间为[],k∈Z
(2)函数f(x)的图象可由函数y=sinx的图象先向左平移个单位,
然后将图象上的点纵坐标不变,横坐标缩短为原来的,最后将图象上的点横坐标不变,纵坐标伸长为原来的2倍而得.
(3)由(1)得,所以
∵0<C<π,
,可得
∵在△ABC中,π-B=A+C,得sinB=sin(A+C)
∴2sinB=cos(A-C)-cos(A+C)可化为:2sin(A+C)=cos(A-C)-cos(A+C)
展开化简得:2sinAcosC+2cosAsinC=2sinAsinC,
代入,得2sinAcos+2cosAsin=2sinAsin
sinA+cosA=sinA,即()sinA=-cosA,
所以
分析:(1)用三角函数的降幂公式结合的诱导公式,可得=1+sin2x.代入函数f(x),再用辅助角公式:,进行合并化简得f(x)=,最后可用函数y=Asin(ωx+φ)的周期与单调性的结论与公式,得到函数f(x)的最小正周期和单调增区间.
(2)根据函数y=Asin(ωx+φ)的图象变换的规律,先进行相位变换将图象左移,然后再分别进行横坐标和纵坐标的伸缩,可得到函数f(x)=的变换过程.
(3根据(1)的表达式,解方程,结合C为三角形内角,得到,将其代入已知等式化简可得()sinA=-cosA,最后利用同角三角函数的关系,可得 tanA的值.
点评:本题给出一个特殊的三角函数,结合三角函数的降次公式、诱导公式和辅助角公式,求函数的单调区间与周期,以及求三角函数的值,着重考查了正弦函数的单调性、三角函数的化简求值和函数y=Asin(ωx+φ)的图象变换等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案