【题目】函数f(x)=6cos2
+
sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形. ![]()
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=
,且x0∈(﹣
,
),求f(x0+1)的值.
【答案】
(1)解:由已知可得,f(x)=3cosωx+
sinωx=2
sin(ωx+
),
又正三角形ABC的高为2
,从而BC=4,
∴函数f(x)的周期T=4×2=8,即
=8,ω=
,
∴函数f(x)的值域为[﹣2
,2
]
(2)解:∵f(x0)=
,由(1)有f(x0)=2
sin(
x0+
)=
,
即sin(
x0+
)=
,由x0∈(﹣
,
),知
x0+
∈(﹣
,
),
∴cos(
x0+
)=
.
∴f(x0+1)=2
sin[(
x0+
)+
]=2
[sin(
x0+
)cos
+cos(
x0+
)sin
]
=2
(
×
+
×
)= ![]()
【解析】(1)将f(x)化简为f(x)=2
sin(ωx+
),利用正弦函数的周期公式与性质可求ω的值及函数f(x)的值域;(2)由x0∈(﹣
,
),知
x0+
∈(﹣
,
),由f(x0)=
,可求得sin(
x0+
)=
,利用两角和的正弦公式即可求得f(x0+1).
科目:高中数学 来源: 题型:
【题目】若先将函数y=
sin(x﹣
)+cos(x﹣
)图象上各点的纵坐标不变,横坐标缩短到原来的
倍,再将所得图象向左平移
个单位,所得函数图象的一条对称轴的方程是( )
A.x= ![]()
B.x= ![]()
C.x= ![]()
D.x= ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为(1,0),A,B是抛物线上位于x轴两侧的两动点,且
=﹣4(O为坐标原点).
(1)求抛物线方程;
(2)证明:直线AB过定点T;
(3)过点T作AB的垂线交抛物线于M,N两点,求四边形AMBN的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 10 | 13 | 9.9 | 7 | 10 | 13 | 10.1 | 7 | 10 |
经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b
(1)根据以上数据,求出y=f(t)的解析式;
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣
<φ<
, x∈R)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈[﹣
,
]时,求f(x)的取值范围.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com