精英家教网 > 高中数学 > 题目详情
8.已知f(x)是偶函数,f(-1)=0,f(x)在[0,+∞)上是增函数,则f(x)<0的解集为(  )
A.(-1,0)B.(-1,1)C.(0,1)D.(-∞,-1)

分析 定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(1)=0,可得f(|x|)<f(1),再利用单调性即可得出.

解答 解:∵定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(-1)=0,
∴f(|x|)<f(1),
∴|x|<1,解得-1<x<1.
∴不等式f(x)<0的解集是(-1,1).
故选:

点评 本题考查了函数的奇偶性、单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.cos(-2014π)的值为(  )
A.$\frac{1}{2}$B.1C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{2x+1}{x-1}$,其定义域是[-8,-4),则下列说法正确的是(  )
A.f(x)有最大值$\frac{5}{3}$,无最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,无最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,则$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出函数y=|x-1|的单调增区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数在(1,+∞)上的单调性,并证明;
(3)当a=3时,不等式f(x)<3x-t对任意x∈[2,3]恒成立,求t的取值范围;
(4)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l与椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$相交于A、B两点,且线段AB的中点为M(1,1),则直线l的方程为x+3y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U={x|0<x<9,x∈N*},若A∩B={2,3},A∩∁UB={1,5,7},∁UA∩∁UB={6},则集合B={2,3,4,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设U=R,M={x|x≥2},N=x|-1≤x<4},求:
(1)M∩N;             
(2)(∁UN)∪(M∩N).

查看答案和解析>>

同步练习册答案