精英家教网 > 高中数学 > 题目详情
F1F2为椭圆
x2
25
+
y2
16
=1的左右焦点,过F1的直线交椭圆于A,B两点
,则△ABF2的周长为(  )
分析:作出图象,由椭圆的定义可得AF1+AF2=2a=10,BF1+BF2=2a=10,相加可得.
解答:解:如图,由椭圆的定义可得AF1+AF2=2a=10,BF1+BF2=2a=10,
∴△ABF2的周长=AF1+AF2+BF1+BF2=20
故选D
点评:本题考查椭圆的简单性质,划归为椭圆的定义是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是 ______.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年江苏省南通市如东中学高三(下)3月月考数学试卷(解析版) 题型:填空题

设F1,F2为椭圆的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是    

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三数学填空题专练6(解析版) 题型:解答题

设F1,F2为椭圆的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是    

查看答案和解析>>

科目:高中数学 来源:2007年江苏省扬州市高邮中学高考数学一模试卷(解析版) 题型:解答题

设F1,F2为椭圆的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是    

查看答案和解析>>

同步练习册答案